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Abstract

Given the negative environmental effects of conventional agricultural techniques, the
need for biodiversity-friendly agriculture systems that rely more on ecosystem services
and less on chemical inputs is becoming increasingly urgent. In this paper, we focus on
crop protection strategies that are alternatives to the use of pesticides. Diversification
of the plant component of agricultural areas at different space and time scales has
been presented as a powerful socio-economic and agro-ecological mechanism for
the sustainable control of pests. Our interdisciplinary group of scientific experts exam-
ined the literature on the ecological effects of plant diversification on pests and their
natural enemies, as well as the social science literature on the conditions for farmers
to adopt the corresponding practices, to assess the potential offered by plant
diversification.

We developed a conceptual framework that connects the agro-ecological and
socio-economic components of an agricultural landscape in a dynamic loop accounting
for interactions among elements at different spatial and temporal scales and their
feedback effects. This article presents this framework and illustrates its application to
the case of wheat production and protection. By explicitly connecting each level of
agro-ecological organization with the potential socio-economic drivers and limitations
underpinning the adoption and implementation of plant diversification in landscapes,
this framework makes it possible to analyse the synergies and antagonisms between
different modes of diversification and the conditions of their deployment. Exploring this
framework is a prerequisite to the identification of opportunities and key feed-back
loops for designing diversification strategies that unlock the agro-ecological potential
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of future production systems. We conclude that there is a need for interdisciplinary
research in experimental landscapes involving farmers and other local stakeholders
to design sustainable future agricultural landscapes that deliver high levels of biological
control services.

1. Introduction

The spatio-temporal diversification of both non-cultivated and

cultivated plants in agricultural landscapes is recognized as a central pillar

of agro-ecology (Altieri et al., 2009; Duru et al., 2015a; Lechenet et al.,

2016; Malezieux et al., 2009), which can be exploited to enhance the mul-

tifunctionality of agroecosystems (Dore et al., 2011; Kremen et al., 2012;

Tamburini et al., 2020). Plant diversification includes, for instance, mixes

of different crops and their cultivars, agroforestry, diversified crop rotations

and agro-ecological infrastructures.

By combining crops and non-cultivated plants at all relevant spatio-

temporal scales, diversification promotes multiple species associated with

wildlife-friendly agriculture and enhances the provision of various eco-

system services to agriculture (Grass et al., 2021). Reviews of the ecological

literature attest to the overall positive effects of plant diversification on the

regulation of pests including pathogens, herbivores and weeds (Barbosa

et al., 2009; Civitello et al., 2015; Tamburini et al., 2020). Yet, the mech-

anisms that underlie such effects, such as barrier, dilution and complemen-

tary resources, depend on the biology of the pests and their enemies and

are influenced by multiple biotic and abiotic variables including landscape

heterogeneity (defined by its two components, composition and configura-

tion of crop and non-crop habitat patches) or pedoclimatic conditions

(Fahrig et al., 2011). This variation in biological response may explain the

inconsistency of pest and natural enemy responses to landscape hetero-

geneity and, in several cases, the low efficacy and adoption of diversification

practices by farmers derived from promising concepts (Chaplin-Kramer

et al., 2011; Karp et al., 2018).

From the agronomic perspective, existing strategies for the diversifica-

tion of vegetation and for crop protection are intimately linked (Altieri,

1999). Field-level crop rotations have been used as a method of controlling

pests and diseases for at least 6000 years, and during the 18th and 19th cen-

turies revolutionized crop productivity. With the development of synthetic

chemical pesticides, however, farmers in industrialized countries have sim-

plified crop rotations, often toward highly profitable cash crops, and farms
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have become increasingly specialized since the latter half of the 20th century.

This evolution has strongly influenced and simplified landscape composi-

tion. The adoption of cash crops and their associated intensive production

practices has come with a series of technological changes and agricultural

systems exhibit locked-in and inflexible behaviours (Meynard et al.,

2017). These systems have evolved for decades in a self-reinforcing way

due to the dependency to agrochemical inputs (Carpentier et al., 2005;

Milgrom and Roberts, 1995). This increasing reliance on technological

solutions to control pest and secure production has rendered less visible

the intricate socio-ecological interactions that previously underpinned agri-

culture and the provision of ecological services, such as pest regulation.

Designing cropping systems that are mainly based on the functioning of

ecosystems will therefore require a breakage of this self-reinforcing,

locked-in socio-technical and economic cycle, jointly in farming systems,

agricultural value chainsa and natural resource management domains

(Duru et al., 2015b). It requires the development of coupled-innovation,

both along the value chain (Meynard et al., 2017) and at regional levels

for the organization and design of landscapes.

The effects of plant diversification on pest regulation are intrinsically

linked to the spatio-temporal scales considered (Ratnadass et al., 2012).

This makes the mismatch between ecological processes (from organisms

to biogeographic area) and agricultural-sector management (from seed to

food and feed distribution) an obstacle to the integration of disciplinary

knowledge (Pelosi et al., 2010). Improving pest regulation would require

specific management responses to influence ecological processes at every

scale. Systematic integration of this knowledge will then be necessary to

guide the design of sustainable, future agricultural landscapes (Duru

et al., 2015b).

In facing this issue, the French ministries for Agriculture, for the

Environment and for Research (MAA, MESRI, MTES) asked the French

National Research Institute for Agriculture, Food and the Environment

(INRAE) to carry out a collective scientific assessment (INRA-DEPE,

2018; Pesce et al., 2021), on the use of plant cover diversification at several

spatial and temporal scales to protect crops. A multidisciplinary committee

of around thirty scientific experts was established in 2020 to inventory the

international, peer-reviewed literature. The assessment aims to evaluate the

a A value chain in agriculture identifies the set of actors and activities that bring a basic agricultural product

from production in the field to final consumption, where at each stage value is added to the product.
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potential of themanagement of plant diversity as an agronomic opportunity to

regulate pests and reduce the use of chemical pesticides, the socio-economic

conditions for the deployment of such crop protection strategies, and the

effects of their implementation on the supply of other ecosystem services

and biodiversity. This article presents the conceptual framework adopted

by the committee as a prerequisite to carry out the literature review.

Recent conceptual frameworks to analyse the issues of an agro-

ecological transition to sustainable landscapes have relied on the socio-

ecological system concept (Ostrom, 2009). Socio-ecosystems are complex

systems composed of many interacting social, economic, political and

ecological elements, organized in different nested levels (Ostrom, 2009).

Socio-technical systems are a sub-element of a socio-ecosystem, and this

terminology refers to the co-evolution of social and technical aspects of

the socio-ecosystem, such as changes that might occur in the wheat trans-

formation sector (Savaget and Acero, 2018). Lescourret et al. (2015)

and Gerits et al. (2021) highlighted that an explicit consideration of both

ecological and socio-economic dynamics are crucial for the design multi-

functional agricultural landscapes. However, the framework of Lescourret

et al. (2015) does not sufficiently consider the multiple spatio-temporal

scales involved (for example, the international scale associated to seed

sectors, or the long term associated to evolutionary processes), while that

of Gerits et al. (2021) does not account for the agronomic components of

the system, which may seem surprising for a study on agroecosystems.

Duru et al. (2015b) integrated the farming systemb and socio-technical

system into their socio-ecological approach to develop an integrated frame-

work highlighting the need to consider, simultaneously, the functioning

of farms, agricultural value chains and natural resource management for

agro-ecological system design at local level. However, the ecological

dynamics of pests that occurs at the different spatio-temporal scales are rarely

considered. It is necessary to address the complexities of the provision of the

service of pest control, by considering the feedback loops that connect

the social and the ecological components of the agricultural system though

farming practices.

In this article, we extend the interdisciplinary framework of Vialatte et al.

(2019), which aimed to facilitate the study and governance of multiple

b The farming system is a population of individual farm systems that have broadly similar resource bases,

enterprise patterns, household livelihoods and constraints, and for which similar development strategies

and interventions would be appropriate, Dixon et al. (2001).
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ecosystem services in agricultural social-ecological landscapes. Our exten-

sion combines socio-economic, ecological, and agronomic components

of agricultural systems in a conceptual framework that provides a dynamic,

theoretical basis for analysing the effects of plant diversification on pest

control. It proposes a holistic view of these nested components, which

scales from organisms to the biogeographic area and from crop varieties

to agricultural value chains, and to the design of governance of agroeco-

systems, considering both services and disservices in agricultural landscapes.

This framework makes explicit the disciplinary knowledge required to

investigate the effects, drivers and limitations of plant diversification for

sustainable crop protection.

The conceptual framework presents three key components, each of

which is specified according to the major levels involved in crop protection

and should be considered for the governance of agricultural landscapes:

(i) The agro-ecological compartment organized at different levels, from

an organism to the biogeographic area.

(ii) The socio-economic compartment also organized at various levels,

from crop varieties to territory. A territory is a socio-economic land-

scape and can be defined both as the spatial extent across which stake-

holder networks are built, maintained and interact, influencing

farming practices (Caron, 2005). The social compartment also includes

all institutions that influence social and socio-ecological interactions,

often extending beyond the boundaries of the territory.

(iii) The agricultural landscape resulting from land use and farming

practices. It is the point of intersection of the two agro-ecological

and socio-economical compartments. It can be viewed as a dynamic

mosaic of habitat patches made of cultivated fields, devoted to agricul-

tural production, and less- or non-productive, semi-natural habitats.

The effects, drivers, and limitations of plant diversification for pest

control are examined in 11 steps, set within a dynamic loop, whose central

point corresponds to the agricultural landscape and the interconnected

agro-ecological and social compartments. In this paper, we outline the main

effects of plant diversification at different spatio-temporal scales on pest reg-

ulation described in the literature (steps 1 to 6). The potential agronomic,

socio-economic, and ecological impacts of deploying plant diversification

at the landscape level as reported in the literature are then highlighted.

Finally, we draw up the opportunities and constraints for the deployment

of different modes of diversification in the production sector (up- and

down-stream) and in institutions, and discuss how to facilitate deployment

as part of future agricultural landscape management (steps 7 to 11).
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This approach is explored using wheat as an example, case study produc-

tion system. This choice is motivated by:

(i) the importance of this crop in temperate agricultural production

systems (e.g. Martin et al., 2021);

(ii) the number and diversity of wheat pests in the world (weeds, patho-

gens, insects) and their associated losses (overall wheat losses by pests

estimated at 28% (Oerke, 2006));

(iii) the abundance of the literature for this crop, which has supported

numerous meta-analyses and reviews;

(iv) the current socio-economic organization of the wheat commodity

sector, which determines the agro-ecological innovations that can

be adopted.

2. Conceptual framework and application to wheat
systems

Fig. 1 illustrates the conceptual framework. We go over the 11 steps

(① to ⑪) of plant diversification’s social-ecological effects, drivers and

limitations.

① The agricultural landscape is the central level of organization of the

framework, bringing together the various levels of agro-ecological

and social components that are involved in plant diversification. The

landscape is composed of patches of crop fields and semi-natural habitats,

themselves composed of different cultivated or non-cultivated

plants. Some elements that make up the landscape belong to both the

agro-ecological and social components. This is the case, for example,

of certain phytophagous species, which belong to the local species pool,

and which are qualified as pests.

At the plant level (1a), diversification concerns the genetics of plants and

their phenotypes and traits (e.g. phenology, morphology, immunity or resis-

tance, nutritional status), which in turn can affect interactions with other

species. In particular, it corresponds to varieties for crops, with related pests

and natural enemies.

Plant diversification can be achieved within the field, spatially or tempo-

rally, by intra- or inter-specific plant associations (e.g. varietal mixture, inter-

cropping, beetle banks) and diversified rotation (temporal diversity) or through

semi-natural habitats in field edges andmargins (1b). At this level, the dynamics

of pest populations in diversified plant communities result from both multi-

trophic interactions (e.g. predator-prey) and selection by local agricultural

practices (diversified cover, tillage, use of pesticides, fertilization, etc.).

139Promoting crop pest control by plant diversification in agricultural landscapes



Fig. 1 See figure legend on opposite page.



Notably in wheat, many of the different modes of plant diversification

have been found to have positive effects on the control of a variety of pest

groups:

Within-field, intra-specific crop diversity
Meta-analysis has shown that variable efficacy of intra-specific crop diversi-

fication, predominantly depends on pest pressure, often induced by climatic

conditions (Dubs et al., 2018). The efficacy of varietal mixtures is particu-

larly noticeable for fungal wheat pathogens causing aerial diseases (e.g. stripe

rust and septoria tritici blotch) rather than those causing soilborne diseases

(Hariri et al., 2001; Kristoffersen et al., 2020; Saur and Mille, 1997).

Effects are stronger in low input cropping systems as highlighted in trials

where crops were not treated with synthetic fungicides (Borg et al., 2018;

Reiss and Drinkwater, 2018). A higher abundance in spiders and springtails

in crop varietal mixtures illustrates the complexity of effects due to trophic

interactions (Chateil et al., 2013), while weed control appears to be limited

by intra-specific crop diversification (Lazzaro et al., 2018).

Within-field, inter-specific crop diversity (intercropping)
Inter-specific diversification by increasing plant species diversity within the

field promotes predation and parasitism (Wan et al., 2020), and different

plant species may be cultivated with wheat (primary crop) to enhance pest

control. Wheat-clover intercropping helps managing weeds during the

wheat cultivation and post-harvest due to the clover residues mulching

the soil (Vrignon-Brenas et al., 2018). Overall, intercropping has been found

to provide weed and disease control, with the evidence for insect control

being weaker (Stomph et al., 2020). When wheat is sown as an intercrop

Fig. 1 Conceptual framework for analysing social and agro-ecological effects, drivers
and limitations (with feedback loops) of plant diversification in agricultural landscapes.
The 11 steps are summarized in three main components: (i) the agro-ecological com-
partment organized at different levels (from organisms to the biogeographic area, in
orange); (ii) the socio-economic compartment also organized at various levels (from
crop varieties to organization of the agricultural sectors at the territory, in blue), with
the institutions (often going beyond the boundaries of the territory) that influence
social and socio-ecological interactions (in grey); and, (iii) the agricultural landscape
resulting from land use and practices (in green). Adapted from Vialatte, A.,
Barnaud, C., Blanco, J., Ouin, A., Choisis, J. P., Andrieu, E., et al. 2019. A conceptual frame-
work for the governance of multiple ecosystem services in agricultural landscapes. Landsc.
Ecol. 34 (7), 1653–1673. doi:10.1007/s10980-019-00829-4.
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in potato or musk melon, and not as the primary crop, it has been found to

provide an effective barrier against aphid pests (Hooks and Fereres, 2006).

Temporal diversity of cultivated and non-cultivated plants
(rotation)
The temporal diversity of plant cover, at the field scale, is primarily driven by

farmer decision-making for crop rotations, cover cropping and green

manures. Rotations have been used to reduce plant diseases, weeds and pests

(McLaughlin and Mineau, 1995). For instance, Brassica crops have proven

useful in wheat rotations because of their biofumigation properties, which

help to control soilborne wheat diseases like Rhizoctonia sp. (Larkin,

2015). Diversifying rotations reduces weed densities (by 49% compared

to a basic rotation with one or two crops) and this reduction is primarily

due to sowing date variation rather than crop diversity (Weisberger et al.,

2019). When looking at the seedbank, a hierarchy of effects from sowing

date, crop type and herbicide is found (Bohan et al., 2011). Regardless of

the environmental context and herbicide use, the effect of rotation diversi-

fication on weeds is stronger under no-till than under tillage (Weisberger

et al., 2019).

The plant diversity of field edges
Field edges and margins (grassy strips, flower strips, hedges) can be a source

of natural enemy populations, such as aphid parasitoids and carabids in wheat

fields (French and Elliot, 2001; Zumoffen et al., 2018). However, the spill

over of natural enemies from the field edges into the core of wheat fields

appears limited for other taxa, such as spiders (Armendano and Gonzalez,

2010; Seyfulina, 2010). Non-cultivated Poaceae at the edge of the field

do not appear to be a source of aphids colonizing the adjacent wheat

(Vialatte et al., 2005). Moreover, some grasses and other specific plants

should be considered as a disservice, as they can be a source of pathogen

inoculum (Fusarium sp., Ustilago sp., Tilletia sp., Claviceps sp.; e.g.

Mourelos et al., 2014) and alternate disease hosts (Berberis sp. for the rust

pathogen Puccinia graminis f. sp. tritici; Burdon and Thrall, 2008, Zhao

et al., 2016).

Large-scale adoption of each of these modes of diversification could have

marked ecological and agronomic repercussions if adopted the landscape

scale. The widespread use of the common mixture of wheat cultivars would

increase the risk of multivirulent selection, depending on the biology of
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the pathogen (Mundt, 2002; Papaix et al., 2011; Phan et al., 2020; de

Vallavieille-Pope et al., 2012). Moreover, the increase of within-field diver-

sity might eventually lead to a trade-off with varietal diversity at the land-

scape scale. The deployment of numerous agro-ecological infrastructures

such as edges and margins adjoining to the fields would promote beneficial

organisms, but can also inadvertently support disservices (e.g. inoculum

sources). The large-scale adoption of plant diversification methods therefore

requires landscape-level coordination between all stakeholders to optimize

the balance of positive and negative outcomes.

② At the landscape level, plant diversification concerns the landscape

mosaic which, from an agro-ecological point of view, provides

resources for species (including pests and natural enemies) over their life

cycle (e.g. refuge, food, and reproduction sites). Resource availability

depends on the spatial and temporal composition and configuration

of habitat patches (landscape heterogeneity) that is determined by

human decision-making.

③ Cultivated fields and semi-natural habitats are connected in time and

space by the dispersal of organisms, giving rise to complex interaction

networks. Importantly, pest control services in the cultivated fields

depend on the surrounding landscape of cropped and non-cropped

habitats.

High landscape heterogeneity benefits natural enemy populations and com-

munities, although its impact on pests and pest control remains unclear

(Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Karp et al., 2018;

Veres et al., 2013). Semi-natural habitats and cultivated fields provide

complementary food resources or overwintering sites for natural enemies

(e.g. hoverflies: Vialatte et al., 2017, Raymond et al., 2014), but the

relative importance of these structures, their interaction with human

decision-making and their effect on pest control are difficult to disentangle

and remain unclear (Petit et al., 2020). In wheat fields, local agricultural

practices (e.g. pesticide use, tillage frequency/depth, number of varieties)

appear to have a stronger impact on richness and abundance of natural

enemy communities than the landscape structure surrounding the fields

(Puech et al., 2014). Weed communities, on the other hand, appear to

respond to the effects of landscape structure rather than to the local intensity

of practices (Alignier et al., 2017).

The main source of aphids colonizing wheat fields in autumn is found to

be maize (Gilabert et al., 2017; Vialatte et al., 2006), which is a sink of virus

populations (BYDV) transmitted byRhopalosiphum padi.Aphid and hoverfly
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abundances in wheat fields in early spring are positively associated to the

forest area in the surrounding landscape, while aphid parasitism is higher

near hedges in late spring (Alignier et al., 2014). Grassland meadows are a

reservoir of natural enemies (Schneider et al., 2013). Hedges also favour

carabid dispersal, as many carabid species overwinter in forest edges and

spill over onto the wheat fields in spring (Roume et al., 2011). The propor-

tion of oilseed rape present in the previous year favours carabid abundance

in wheat fields (source effect), while the occurrence of rapeseed in adjacent

fields in the current year decreases carabid abundance in the wheat (Marrec

et al., 2017).

Although the complementarity between different types of semi-natural

environments in terms of pest control potential remains poorly studied, and

appears to be taxon-dependent (Badenhausser et al., 2020), the literature

seems to converge to a figure of about 20% of the surface area being assigned

to semi-natural habitats in agricultural landscapes for the support of natural

enemies (Gagic et al., 2021; Martin et al., 2019; Tscharntke et al., 2021). For

the crop mosaic, increases in crop diversity and decreases in field size have

been found to be positive factors for biodiversity and biological control in

agricultural landscapes (including wheat, Redlich et al., 2018, Sirami et al.,

2019). The proportion of semi-natural habitats, field size and crop diversity

in the landscape jointly drive the potential associated diversity that can occur

in the different fields (Gagic et al., 2021; Martin et al., 2019; Tscharntke

et al., 2021). With large-scale dispersal of organisms between habitats,

coordination of crop rotations at the landscape scale might be used to favour

natural enemies while reducing pests by promoting or limiting certain

combinations of crops within and between years.

④ The presence in the landscape of species from the regional (biogeo-

graphic area) pool depends notably on local resources and human prac-

tices, which act as filters. Regional climatic conditions and their changes

also influence ecological networks.

Processes at the landscape level, such as spill over, interact with the processes

at the regional level (e.g. migration) to explain the aphid-parasitoids trophic

interactions networks and the provision of biological control services in

cereal fields (Andrade et al., 2015). However, the parasitoids of wheat aphids

appear to be more sensitive to vegetation diversification at farm level than at

regional level (Brewer et al., 2008). More generally, regional climate and

habitat connectivity are among the main risk factors for pest invasion in

agricultural areas (Fears et al., 2014).
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The risk of pest emergence is expected to increase with climate change.

In the UK, wheat is likely to develop earlier in the season, favouring infec-

tion with Fusarium ear blight (Madgwick et al., 2011). The diversification of

landscapes, to promote the resilience of biological control in the face of

climatic events, may be effective in limiting the risks of emergence and

outbreaks linked to climate change (Feit et al., 2021). Managing habitat con-

nectivity at large scales requires assessing the cost-benefit balance: while it

increases invasion risk, it also promotes movement of natural enemies

(Tscharntke et al., 2015).

⑤ Different species perform ecological functions that ensure the ecosystem

functioning, such as primary production and natural regulation.

⑥ Ecological functions underpin ecosystem services, such as pest control,

and disservices, including pest outbreaks, from which the social part

of the landscape experiences costs or reaps benefits. These include

increases or decreases in the use of synthetic pesticides to control pests,

as just one example. Farmers have to face agronomic damage, caused by

crop yield and/or quality loss.

Here, we focus on the agronomic literature that has explicitly quantified pest

control and/or its benefits, including the incidence of disease, predation rate,

pest damage and yield loss and not only the relative pest and/or natural

enemy abundances more usually considered in the ecological literature.

Beillouin et al. (2020) conducted a meta-analysis of a wide range of

diversification strategies at the crop-field scale. This showed that plant diver-

sification can boost pest control by 63%, decreasing damage and enhancing

crop yields by 13% on average. Varietal mixtures may also maintain high

yield potential, while reducing herbicide treatments by half (Oveisi et al.,

2021). Plant intraspecific diversification has a generally positive effect on

yield in wheat fields (+3% of yield on average, but with a large variation),

and reduces interannual yield variability (Borg et al., 2018; Kiaer et al., 2009;

Reiss andDrinkwater, 2018). Cereal-legume intercrops reduce disease dam-

age by 33% (Zhang et al., 2019) and improve yields and stability (Bedoussac

et al., 2015; Raseduzzaman and Jensen, 2017).

Perennial, species-rich flower strips can significantly reduce the number

of cereal leaf beetles while also increasing the yield of nearby winter wheat

by 10% (Tschumi et al., 2016).

At the landscape scale, a quantitative synthesis across multiple crops

(including wheat) showed that pest control by natural enemies in crop fields

was 1.4 times higher in landscapes with low proportion of arable land and
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high edge density than in landscapes with low edge density (Martin et al.,

2019). Another quantitative synthesis showed that landscape simplification

and the loss of semi-natural habitats would reduce biological control by 46%

(Rusch et al., 2016). Biological control in wheat fields with high

landscape-level crop diversity appears 8 to 33% higher when compared to

low diversity landscapes (Redlich et al., 2018).

These results suggest at a considerable potential for the use of functional

diversity for pest management. However, to translate improved pest man-

agement into increased yield, which is a composite variable resulting from

multiple direct and indirect agronomic, soil, climatic and ecological factors,

agricultural practices must be explicitly considered in their landscape context

(Ricci et al., 2019, but see Puech et al., 2015).

⑦ Farmers are dependent for certain ecosystem services and disservices,

including pest control on ecological networks that result from the struc-

ture of and management practices in the landscape.

The most promising modes of diversification of plants, in terms of efficiency

and acceptance among agricultural stakeholders, appear to be by modifica-

tion of the within field lay out, such as the installation of grassy strips within

fields. Diversification of plants at the landscape scale appears as more difficult

to implement (Salliou et al., 2019). Pest control is largely done via an indi-

vidual decision-making process managed by each farmer, individually. This

individual freedom of action may be modulated in interaction with supply

chains and technical advisors (Barnaud et al., 2018). Farmers are thus more

likely to embrace within-field management approaches than collective

management practices. Pests and their natural enemies, together with the

landscape structure, represent common goods in the sense described by

Ostrom (1990). Their management requires coordination at the landscape

scale, which has little chance of spontaneously emerging from unregulated

interactions between individual farmers (Cieslik et al., 2021; Costello et al.,

2017). Such collective management requires polycentric governance mech-

anisms (Biggs et al., 2012; Ostrom, 2010), which may be hampered by

strategic interactions which can lead to free-riding, i.e., strategically letting

the other farmers enhance biological control in the landscape (Wilen, 2007).

One example of polycentric governance is the development of economic

and environmental interest groups, such as the GIEE (2021) in France

who deal with specific local agro-ecological issues. Farmers, on the other

hand, see the landscape as a resource for pests rather than a source of biolog-

ical pest control (Salliou and Barnaud, 2017). Diversifying the landscape by

planting hedges, for example might generate issues at the farm level because
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some of the related benefits would be shared with other farmers in the land-

scape, while the cost in terms of lost producing area remains individual

(Atallah et al., 2018; Fenichel et al., 2014; Miranowski and Carlson,

1986). Scientific uncertainties about the efficiency of such practices, the

availability of management practices and tools that reduce risk (e.g. pesti-

cides) and the possibility of losing individual decision-making autonomy

are all identified as key factors determining the current individual and

collective farmer strategies (Duru et al., 2015a,b; Salliou et al., 2019;

Salliou and Barnaud, 2017).

⑧ The possibilities for farmers to diversify the plant component of their

fields depends on constraints along the agricultural value chain, in par-

ticular regarding the availability of seeds, technical support and tools

upstream in the value chain.

⑨ Other constraints associated to downstream are imposed on farmer

decision-making, such as through agricultural product standards and

economic opportunities.

After the second world war, cash crop specialization allowed farmers to

develop agronomic practices and knowledge on a limited number of crops

(e.g. Zentner et al., 2002), resulting in marked increases in the relative share

of those crop by acreage. The development of specialized farms led to the

emergence of services upstream in the value chain, for providing agronomic

advice, seeds and chemical inputs. The value chain became more and more

integrated, with firms supplying these inputs to farmers and also buying their

production, thereby influencing modes of production via contracts, produc-

tion guidelines and quality standards. Alongside this specialization of farms,

large specialized production regions emerged, resulting in reductions in

logistic costs at harvest and critical market size for export infrastructures,

such as cooperatives in France (Filippi and Triboulet, 2011). Such a system

has evolved for decades in a consistent, self-reinforcing way (Carpentier

et al., 2005; Milgrom and Roberts, 1995). It was supported by increasing

investment in Research and Development for the main cash crops, such

as the huge market for wheat, and a reduced research effort on minor crops

with much smaller markets (Meynard, 2013).

Currently, diversifying rotations on farms leads to three main types of

constraints, including: higher workloads; limited outlets for unconventional

crops introduced into rotations; and, short-term economic impacts due to

the reductions in the production of cash crops such as wheat. Land-use deci-

sions for cropland take into account business prospects, which depend on the

quantity and quality produced. Management of mixed harvested products,
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such as would happen with intercrops, may also be considered as a limit for

accessing markets which demand vast, homogeneous and constant supplies

of agricultural products. In many cases, the access to market of agricultural

production is realized by intermediates collecting from farmers and selling

onmarkets large quantities of agricultural commodities. These intermediates

are able to manage the supply and reduce price volatility by storing excess

production (Hannachi, 2011). Imposed restrictions on homogeneity of

quality, for example, are required by transformation agro-food firms as a

condition of marketability (Le Bail and Valceschini, 2004). Wheat produc-

tion is particularly constrained by product uniformity requirements. Millers

keep homogeneous batches of each variety in order to make their own

flour blends based on recipes that they sell to food processing companies that

specialize in bread, cookie and pasta manufacture. These patterns in the

value chain restrain the capacity to develop resistant cultivars and generalize

their use at large scale (Lamine et al., 2010).

Combinations of intercropped species, such as wheat sown with peas,

may necessitate grain sorting following harvest. Farmers, whomust purchase

specialized equipment, are typically left to handle this responsibility by

cooperatives (Magrini et al., 2016). A group purchase of this type of equip-

ment would be a good approach to limit equipment costs, and might

encourage landscape scale cooperation among farmers.

The use of labels (certification) can act as an opportunity or as a constraint

for farmers to adopt plant diversification, depending on the ambitions of the

certification body for the diversification. Being certified Organic, which

prohibits the use of synthetic pesticides, may indirectly lead to a diversifica-

tion of plant cover to promote natural regulation as an alternative to pesti-

cide use. However, plant diversification issues are not intrinsically linked to

organic farming in field crop systems such as wheat, and diversification

measures can be deployed in conventional systems (Tscharntke et al.,

2021). High environmental value (HEV) certification, on the other hand,

requires a minimum proportion of semi-natural elements, which has already

been reached in the vast majority of French farms, thus limiting any further

increase in diversification for some certified farmers.

⑩ Institutions influence social and socio-ecological interactions through,

for example, public incentives, regulatory policies and the development

of scientific knowledge.

Recent trends in institutional and public policies favour diversification of

plants to support a number of ecosystem services. Longer and diversified

rotations are encouraged via green payment incentives as part of the first
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pillar of the CAP or as part of the Agri-Environmental Climate Schemes

(AECS) proposed in the second pillar. Subsidies are also used to maintain

pasture land, semi-natural habitat elements and to support agroforestry

(Lefebvre et al., 2012). Such payments can act as drivers of diversification,

to which some farmers respond, but can also represent barrier to diversifi-

cation. Where the minimum eligible rotations supported by payments have

low diversity, for example, these may be selected and payments may lead

either to no change or even lower crop diversity. Indeed, the 2014 greening

of the CAP measure which supported diversified rotations have had a very

minor effect on land allocation (Louhichi et al., 2018), affecting only 4.5% of

the agricultural landscapes in Europe. This limited effect has been docu-

mented (Gocht et al., 2017; Mahy et al., 2015; Schulz et al., 2014) and

explained by the low ambition of the policies in terms of diversification

(Pe’er et al., 2019), the definition of so many exceptions that 45% of farms

and 14% of the area were not covered by the regulation constraints, as well

as a too broad definition of “Ecological Focus Areas”. Regarding wheat

production, the AECS “crop system” is associated with a requirement to

diversify crop cover, with a target of 5 different crops over a 5-year period,

but this incentive program is voluntary. Future sustainable agricultural

landscapes will therefore requires that public policies are appropriately

constructed, fostering an agro-ecological transition to sustainability.

Regulations on seed quality impose strong constraints on farmers

through the DUS (Distinction, Uniformity, Stability) requirement for

variety registration, as a tool to assure plant breeder property rights.

Conventional breeding, which produces genetically homogeneous varieties

such as pure lines for wheat, is designed for that purpose, and has resulted

in a standardization of vegetal genetic material (Hermesse et al., 2018).

Intellectual property rights for newwheat varieties further increases the con-

straints on the seed sector and results in little diversification (Grimonprez,

2012, 2017; Hermitte, 1990). Alternative breeding methods, such as on

farm selection, participatory plant breeding and reintroduction of ancient

landraces generate more diverse varieties but do not readily fit into the reg-

ulatory system. New legislation and regulation to allow selection by farmers

of varieties adapted to their local environment and practices would be an

important step toward sustainable future agriculture landscapes (van Frank

et al., 2020).

Research and Development also generate constraints and opportunities

by offering new diversification options to farmers. R&D is more dynamic in

large markets, such as the wheat market, than for diversification crops
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(Charlot et al., 2015). As such, it will be easier in the short-run to diversify

production within field than in rotations. A possibility is to (study and)

use mixes of registered varieties, as currently experienced in France and

Denmark (Labarthe et al., 2021).

⑪ Plant diversification practices can be adopted in response to current agri-

cultural policies, prices, standards and advice, and where farmers in their

own observe sufficient levels of pest control and neighbouring fields.

While the literature testifies to a general, positive effect of plant diversifica-

tion practices on pest control, it also emphasizes the context-dependence

of the observed effects. As plant diversification practices have different

management time-scales, some flexibility and adaptation is needed for

appropriate local deployment, depending upon the biophysical, meteoro-

logical, and socio-economic context. Crop varietal mixtures make it possi-

ble to assemble different, complimentary combinations of resistance traits to

pests and diseases at a local level, with great flexibility. Grass and flower strips

persist for a number of years, but can also readily be created and modified to

produce specific patterns (Ernoult et al., 2013). Hedgerows and agroforestry

require more time to produce a valuable effect, with the full agro-ecological

benefits only manifesting a few years, decades or even centuries after

adoption (e.g. Alignier et al., 2020).

Plant diversification practices directly affect the landscape structure ①,

and then via the available resources for organisms involved in natural

regulation ②, pest control. The conceptual framework we describe here

is therefore intrinsically dynamic.

3. Discussion and Conclusion

An analytical framework allowing an interdisciplinary analysis of crop protec-

tion strategies relying on plant diversification (Fig. 1).The framework explicitly

attempts to represent the range of organization levels and of associated

potential socio-ecological opportunities and constraints underpinning plant

diversification in the context of an agro-ecological transition to sustainable

pest control. The goal is to eliminate any potential ambiguity across scientific

disciplines, allowing an interdisciplinary approach to future plant diversifi-

cation. It may also serve as a medium for communicating the multi-scale

complexity and linkages between the ecological and social functioning of

agricultural socio-ecosystems. Each mode of plant diversification and its

spatial and temporal effects can be precisely positioned in the framework.

These properties are important for highlighting the agro-ecological basis
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of diversification modes and their performance and the current

socio-economical limitations of their implementation at the field, farm

and landscape scales. This is a prerequisite for designing how to combine

these drivers and to identify key feed-back loops to account for when

designing diversification strategies in order to unlock the current production

systems.

Positive ecological effects of plant diversification on wheat pest regula-

tion, but knowledge gaps for the links between pest regulation level, crop

damage and yield.The effects of different modes of plant diversification,

across spatial and temporal scales, tend to be most often positive for the reg-

ulation of wheat pests. Yet those effects are overall highly variable from one

social-ecological context to the other. Thus, a scientific challenge lies in

achieving a more thorough understanding of this variability and the key

drivers to promote effective diversification strategies. A key gap in scientific

knowledge, and a barrier to the adoption of strategies of diversification

by farmers and their advisors, is linked to the fact that the long-term impacts

of pest control (and other ecosystem services) and its consequences on yields

are uncertain and context-dependant (Duru et al., 2015a; Salliou and

Barnaud, 2017). While many scientific studies deal with ecological issues,

few of them handle impacts of pests on crop production or damage, strongly

limiting the utility of the available scientific literature for agricultural stake-

holders (Petit et al., 2020). It is possible that combining plant diversification

modes will reduce uncertainty and risk in pest control, but it may also come

at the cost of undesirable socio-ecological interactions. There is currently

too few field-research that has looked at diversification modes in combina-

tion, notably combining actions at plant, field and landscape levels (Petit

et al., 2020). Developing agro-ecology at field, farm and landscape levels

requires deciphering the multiple ecological interactions underpinning

the emergence of pest control services ( Jeanneret et al., 2021). Modelling

approaches have attempted to explore these interactions, but have done

so only incompletely. Landsepi (Rimbaud et al., 2018) explicitly works at

different spatial scales to simulate the cropped landscape epidemiology

and evolution of plant diseases, but does not consider the role of the

semi-natural elements. Non-cultivated plants appear to play a central roles

for the provision of ecosystem services such as pollination (Bretagnolle and

Gaba, 2015) and biological control (e.g. Madden et al., 2021), particularly

within fields.

Current socio-technical limitations and constraints for the implementation of crop

diversification at large scale and the interest of collective action to overcome them.
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Several constraints were identified at the upstream and downstream value

chain levels, related to logistics (inputs, crop productions), farmer knowl-

edge (individual skills, R&D organization and dissemination of knowledge),

and economic outcomes. A major socio-economic limitation of crop

protection strategies that rely on plant diversity management is the effect

of diversification on the whole economic outcome, both the reduction in

production and the savings from reduced input used, which is not well

understood or documented in the scientific literature. The available studies

indicate that for current agrifood systems, economic return with crop diver-

sification is usually reduced in the short term and economic risk is increased.

Both these effects act as a major constraint on adoption. As we expect

that most modes of diversification would be implemented by individual

farmers, the social benefits for society, of pesticide pollution reduction,

enhanced biodiversity and related services, must be translated into appro-

priate support to promote the adoption of diversification practices. First,

the implementation of public subsidies and payments for environmental

services should be carefully designed to properly account for all direct

and indirect costs, such as the trade-offs among different ecosystem services

(Capodaglio and Callegari, 2018). Second, promoting farmer-to-farmer

cooperation is another opportunity through collective purchasing of equip-

ment, sharing of labour and developing local exchanges of products (Martin

et al., 2016). Participatory research, such as in the selection of varieties and

the development of new cropping systems, is another way of developing this

sense of cooperation and community among farmers (Berthet et al., 2020).

Finally, peer effects will likely play a role where farmers adopt innovative

practices only after the example of neighbouring farmers (Schmidtner

et al., 2012). Farmer demonstration will therefore be a key element of

promoting new modes of plant diversification.

There is a need for integrated, large-scale studies to analyse interactions between all

ecological effects induced by plant diversification, and to assess the feasibility of the

deployment of multi-pest crop protection strategies across multiple scales.Dispersal

of organisms across landscape may connect different crops in time and

space, linking crop systems together. The management of multiple pests

across multiple crop systems and scales remains a major challenge for

an agro-ecological transition to sustainable pest control (Litsinger and

Moody, 1976). Such complex ecological interactions have crucial implica-

tions for the success of plant diversification on pest control, and more

broadly, on ecosystem services. However, the hypothesis that landscape

re-diversification can restore the biotic interactions that underpin ecological

regulations has yet to be tested. Landscape diversity is frequently studied ad
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hoc by comparing various levels of landscape simplification, rather than

expressly through large-scale landscape restoration trials. The degradation

of biodiversity and species pools on large (i.e. regional) dimensions, as

well as the history of disturbance, extinction debts, and the growing intensity

of climate change, may make these goals difficult to achieve (Kuussaari et al.,

2009; Lunt and Spooner, 2005).

Considering all agro-ecological and socio-economic determinants of

plant diversification implies that we must start testing expectations for pest

control at all scales up to landscape scale (Landis, 2017), including their

socio-economic organization, in order to challenge the assumptions of pest

suppressive landscapes under realistic, and where possible controlled condi-

tions (Begg et al., 2017). Modelling approaches can complement this

endeavour, especially through the exploration of scenarios for the deploy-

ment of diversification methods, and the selection of promising landscape

properties to explore empirically (Tixier et al., 2013). Involving farmers

and agricultural stakeholders in the design of agro-ecological landscapes is

then a prerequisite (Duru et al., 2015b; Jeanneret et al., 2021; Petit et al.,

2020). The goal should be to determine the set of acceptable and effective

diversification strategies for each territory, which reflect its social-ecological

specificities while also creating the right governance procedures to support

the transition (Duru et al., 2015b).

Limitations of this conceptual framework and perspectives.

Literature shows that plant diversification is promising, but the majority

of the articles makes it clear that there are many knowledge gaps for its

implementation. We believe that the framework is one more step forward.

The ecological limitation of our approach maybe concerns long-distance

dispersal pests, which are mainly associated with meteorological factors as air

masse fluxes (e.g. Leyronas and Nicot, 2013). However, plant diversification

could locally influence these air masse fluxes through the establishment of

woody semi-natural elements, while the diversity of interaction networks

based on plant diversification could influence their ability to induce

outbreaks.

From a socio-economic and agronomic point of view, wheat production

and the transformation sector in particular is currently focussed on the

criterion of homogeneity of the grains produced. Same constraints of homo-

geneity are shared by many arable crops, such as processing potatoes or oil

seeds. Other systems, such as mixed agricultural and animal production at

the farm or the territory level with a portion of local crop consumption,

can alleviate some of the obstacles to downstream output (Martin et al.,

2016). Human food markets are relying more on contracts, with precise
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requirements linked to labels and strong traceability issues, whereas animal

feed markets are more open (Meynard, 2013). Plant diversity could be

deployed using these less constrained production systems rather than cash

crops at farm level but also locally through development of local exchanges

between arable and livestock farms (Martin et al., 2016; Moraine et al.,

2017). However, the upstream channels and public incentives in these alter-

native systems are sometimes less developed, with extremely little varietal

innovation for example (Meynard et al., 2017). It appears to us necessary

to go beyond the logic of the crop or the large-scale value chains if we want

to support a strong agro-ecological transition.

Finally, the long-term temporal dimension of several decades must be

considered in concrete terms to the conceptual framework as climate change

and its implications must be addressed (IPCC, 2021). On the one hand,

climate change modifies the abiotic conditions for plant growth and devel-

opment (Ababaei and Chenu, 2020; Asseng et al., 2019; Gammans et al.,

2017; Bohan et al., 2022), as well as the conditions for the development

of pests and their natural enemies, their geographical distribution and the

injury profiles themselves (Bebber et al., 2013; Chaloner et al., 2021;

Fones et al., 2020; Monticelli et al., 2022). The management of pests and

diseases through plant diversification therefore implies considering climate

change and designing systems whose equilibrium will be precarious by

nature (even if plant diversification is also an opportunity for resilience to

climate change, Dardonville et al., 2020, Marini et al., 2020). On the other

hand, farming practices have already adapted to tackle climate warming

(shifting cycles as part of an avoidance strategy, irrigation, choice of new

species or varieties; Anderson et al., 2020; Raza et al., 2019). Studies have

demonstrated the adaptive response of pathogens to temperature by their

intra-specific diversity (de Vallavieille-Pope et al., 2018; Mariette et al.,

2016). This acclimation of pathogens to temperature, especially for those

with a broad geographical distribution and re-emerging worldwide, suggests

that we must take account of these patterns of local adaptation to build

robust diversification strategies for pest control at the landscape scale.
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